Objective: To investigate the properties of DTFT Example2 x1=rand(1,11); x2=rand(1,11); of import=2; beta=3; x3=alpha*x1+beta*x2 n=0:10; k=0:500; w=(pi/500)*k; m=n*k X11=(exp(-j*pi/500)).^m X1=x1*X11 X2=x2*X11 X3=x3*X11 X_check=alpha*X1+beta*X2; faulting=max(abs(X3-X_check)) phantasm = 1.1235e-014 Example 3 x=rand(1,11) n=0:10 K=0:500 w=(pi/500)*k m=n*k X11=(exp(-j*pi/500)).^m X=x*X11 y=x; n_new=n+2; m=n_new*k X11=(exp(-j*pi/500)).^m Y=y*X11; Y_check=exp(-j*2*w).*X; erroneousness=max(abs(Y-Y_check)) fracture = 9.2115e-015 Example 4 n=0: carbon x=cos(pi*n/2) K=-100:100 w=(pi/100)*k m=n*k X11=(exp(-j*pi/100)).^m X=x*X11 subplot(211) plot(w,abs(X)) y=exp(j*pi*n/4).*x Y=y*X11 subplot(212) plot(w,abs(Y)) Example 5 h=[1 -2 3 -2 1] X=freqz(x,1,w) H=freqz(h,1,w) XP=X.
*H; subplot(221) plot(w/pi,abs(XP)) title(product of magnitude spectrum) subplot(222) plot(w/pi,angle(XP)) title(phase spectrum) y=conv(x,h) Y=freqz(y,1,w) subplot(223) plot(w/pi,abs(Y)) title(magnitude spectrum of convolved sequence) subplot(224) plot(w/pi,angle(Y)) title(phase of convolved sequence) Questions: 1 x1=rand(1,11); x2=rand(1,11); alpha=2; beta=3; x3=alpha*x1+beta*x2 n=0:10; k=0:500; w=(pi/500)*k; m=n*k X11=(exp(-j*pi/500)).^m X1=x1*X11 subplot(2, 1, 1) plot(k,X1, r); commercial enterprise on; X2=x2*X11 plot(k,X2, b); affirm on; X3=x3*X11 plot(k,X3, g); X_check=alpha*X1+beta*X2; error=max(abs(X3-X_check)) subplot(2, 1, 2); plot(k,X3, r); hold on; plot(k, X_check, b) hold on; plot(k, error,g) 2 X11=(exp(-j*pi/500)).^m X=x*X11 y=x; n! _new=n+2; m=n_new*k X11=(exp(-j*pi/500)).^m Y=y*X11; subplot(2, 1, 1) plot(k,X, r); hold on; plot(k,Y, b); Y_check=exp(-j*2*w).*X; error=max(abs(Y-Y_check)) subplot(2, 1, 2); plot(k,Y, r); hold on; plot(k, Y_check, b) hold on; plot(k, error,g)If you want to stick around a full essay, order it on our website: BestEssayCheap.com
If you want to get a full essay, visit our page: cheap essay
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.